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Abstract. A new approach to probability theory based on quantum mechanical and Lie
algebraic ideas is proposed and developed. The underlying fact is the observation that the
coherent states of the Heisenberg–Weyl,su(2), su(r + 1), su(1, 1) and su(r, 1) algebras in
certain symmetric (bosonic) representations give the ‘probability amplitudes’ (or the ‘square
roots’) of the well known Poisson, binomial, multinomial, negative binomial and negative
multinomial distributions in probability theory. New probability distributions are derived based
on coherent states of the classical algebrasBr , Cr andDr in symmetric representations. These
new probability distributions are simple generalization of the multinomial distributions with
some added new features reflecting the quantum and Lie algebraic construction. As byproducts,
simple proofs and interpretation of addition theorems of Hermite polynomials are obtained
from the ‘coordinate’ representation of the (negative) multinomial states. In other words, these
addition theorems are higher rank counterparts of the well known generating function of Hermite
polynomials, which is essentially the ‘coordinate’ representation of the ordinary (Heisenberg–
Weyl) coherent state.

1. Introduction

Quantum theory is one of the greatest achievements in twentieth century physics. It
has changed the fundamental structure of physics, material science and also influenced
various disciplines, in particular biological (genetic) science and philosophy. Quantum
theory dictates that at the microscopic level Nature is not governed by causal laws
typically exemplified by the Newtonian equation of motion, but by probabilistic laws. The
fundamental ingredient of quantum theory is, however, not the probability itself but the
probability amplitude which obeys a certain equation of motion and the square of which
gives appropriate probabilities.

In the present paper we report on an attempt to applyquantum theory ideasto probability
theory itself. This, we believe, will provide new perspectives on probability theory and
hopefully will enrich the long-established and rather mature science. The first step would
be to associate certain ‘probability amplitudes’ to some typical probability distributions
of classical probability theory. In a broader perspective, this problem belongs to the
paradigm of ‘square roots’. The Dirac equation is obtained as a ‘square root’ of the
Klein–Gordon equation. The creation and annihilation operators can be considered as
‘square roots’ of the harmonic oscillator hamiltonian. Of course such a ‘square root’
can never be unique. It depends on the formulation. It turns out that the ‘coherent
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states’ [1–4] in quantum optics and the so-called ‘generalized coherent states’† [5–7]
associated with various Lie algebras could be identified as certain ‘probability amplitudes’.
For example, the coherent states associated with the Heisenberg–Weyl algebra,su(2) [8, 9],
su(r + 1) [10, 11] andsu(1, 1) [5, 10, 12–15]su(r, 1) [15] algebras in totally symmetric
(bosonic) representations could well be interpreted as ‘probability amplitudes’ for the
Poisson, binomial, multinomial and negative binomial, negative multinomial distributions
in probability theory, respectively [15, 16]. This also means, in turn, that these typical
discreteprobability distributions are characterized in terms of Lie algebras (groups) and
their representations. The relationship between the Poisson distribution and the ordinary
coherent states is well known and that of the binomial distribution and thesu(2) coherent
states is also known, but to a lesser degree. The characterization of the negative binomial
(multinomial) distributions by Lie-algebra representations has been reported in our previous
work [15, 16].

The second step is to extract useful information (predictions) from the characterization
‘probability amplitudes= coherent states’. One would naturally ask ‘what would be the
probability distributions associated with the other Lie algebras and/or other representations?’
In the present paper we mainly address the problems in this step. We choose the classical
Lie algebras,Br , Cr and Dr in Cartan notation (orso(2r + 1), sp(2r) and so(2r)
algebra, respectively) and construct the coherent states in the totally symmetric (bosonic)
representations. This gives rise to new probability distributions, to be denoted asBr
multinomial distributions, etc. One reason for choosing the symmetric representations is
that they are supposed to give closest analogs of the classical probability distributions, like
the multinomial distribution. Another reason is the relative ease of the calculation and
presentation.

The third step would be to discuss the time evolution (stochastic process) based not on
the probability itself but on the ‘probability amplitude’ in the spirit of quantum theory [17].
This would be the subject of a future publication.

This paper is organized as follows. In section 2 we explain the basic idea of introducing
the ‘probability amplitude’ by taking the simplest and well known example of the Poisson
distribution and derive the ordinary coherent state. This section is meant for wider
readership. In section 3 we discuss the ‘probability amplitudes’ for the binomial and
multinomial distributions, the coherent states ofA1 (su(2)) andAr (su(r + 1)) algebras
in a slightly different way from our previous work [16]. The representation theory aspects
of these algebras are emphasized in order to facilitate the transition to the other algebras
treated in later sections. As new material in this section we discuss thex (coordinate)
representation of these coherent states. Based on new expressions of theA1 and Ar
coherent states, which have straightforward interpretations of ‘probability amplitudes’ for the
binomial and multinomial distributions, we obtain a simple (quantum theoretical) proof and
interpretation of the addition theorems of the Hermite polynomials describing the number
states of the harmonic oscillators. This is analogous to the well known fact that the
coordinate representation of the coherent state of the Heisenberg–Weyl group gives the
generating function of the Hermite polynomials. In sections 4, 5 and 6 we derive new
probability distributions associated with the totally symmetric (bosonic) representations of
the Cr , Br andDr algebras, respectively. These are the first and simplest results of the
second step of the ‘quantum theory of probability’ mentioned above. Since the Dynkin
diagram ofCr is obtained from that ofA2r−1 by folding, theCr coherent states resemble
closely those of theA2r−1 algebra. However, the obtained probability distributions (termed

† In this paper we simply call them coherent states.
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Cr multinomial distributions) have markedly different features to ordinary multinomial
distributions, reflecting the different weight-space structures of theCr andA2r−1 algebras.
The probability distributions associated with the symmetric representations ofBr andDr

algebras also have new and interesting features. Since theBr Dynkin diagram is obtained
from that ofDr+1 by folding, these probability distributions are related somewhat. Section 7
is devoted to a summary of results. In the appendix we give a simple proof and interpretation
of another type of addition theorem for Hermite polynomials based on thex representation
of su(1, 1) and su(r, 1) coherent states. The formula is known as the generalized Mehler
formula, but is not found in the standard mathematics reference texts. This time the
summation includes an infinite number of terms, reflecting the infinite dimensionality of
the irreducible unitary representations of these non-compact algebras.

2. ‘Quantum theory of probability’: an example

Let us begin with the naive idea of associating ‘probability amplitude’ to a probability
distribution. In other words, we explain how to give some meaning to a ‘square root’
of a probability distribution by taking the simplest example of the Poisson distribution.
Throughout this paper we consider only discrete probability distributionsP parametrized
by a set of integers. A probability distribution parametrized by one non-negative integern

is completely specified by a set of non-negative numbers satisfying the conditions of unit
total probability:

Pn > 0
∞∑
n=0

Pn = 1. (2.1)

For a quantum theory let us introduce a Hilbert spaceH with an orthonormal basis|n〉,
n = 0, 1, 2, . . . :

〈m|n〉 = δmn (2.2)

satisfying the completeness relation

I =
∞∑
n=0

|n〉〈n| (2.3)

in which I is the identity operator. Our objective is to find a normalized state|ψ〉 in H
such that its transition amplitudes〈n|ψ〉 give rise to the probability distribution

|〈n|ψ〉|2 = Pn n = 0, 1, 2, . . . . (2.4)

Then by using the completeness relation one obtains

|ψ〉 =
∞∑
n=0

|n〉〈n|ψ〉 =
∞∑
n=0

eiδn
√
Pn|n〉 (2.5)

in which the phaseδn is arbitrary. Thus far the Hilbert space is unspecified.
Let us choose asH the Hilbert space of one of the simplest quantum systems, the

harmonic oscillator. It is described by the annihilation and creation operatorsa and a†

satisfying the commutation relation

[a, a†] = 1. (2.6)

(Throughout this paper Planck’s constant ¯h is set to unity.) Then the orthonormal basis is
simply given by

|n〉 = (a†)n√
n!
|0〉 n = 0, 1, 2, . . . (2.7)
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in which |0〉 is the vacuum state characterized by the condition

a|0〉 = 0. (2.8)

The well known Poisson distribution describing random processes occurring in a time
(space) sequence is

Pn(α) = e−α
2 α2n

n!
n = 0, 1, 2, . . . . (2.9)

For example, the number of radioactive decay particles emitted from a sample in a fixed time
(t) is known to obey this distribution,α2 ∝ t . Then the quantum state|ψ(α)〉 (‘probability
amplitude’) corresponding to the Poisson distribution (2.9) is easily obtained (we setδn = 0):

|ψ(α)〉 = e−
1
2α

2
∞∑
n=0

αn√
n!
|n〉. (2.10)

If we substitute the definition of the number state in terms of the creation operator, we
obtain a closed form

|ψ(α)〉 = e−
1
2α

2
exp

(
αa†

) |0〉 = exp
(
α(a† − a)) |0〉 (2.11)

and the last formula is obtained by using the Baker–Campbell–Hausdorff (BCH) formula

eA+B = eAeBe−
1
2 [A,B]

for the case in which [A,B] commutes withA andB. This state was first introduced by
Schr̈odinger [1] and discussed by many authors [2–4] under the name ‘coherent state’
which was coined by Glauber in quantum optics. The coherent state has many other
characterizations.

(i) It is an eigenstate of the annihilation operator:

a|ψ(α)〉 = α|ψ(α)〉.
(ii) It is a minimum uncertainty state:

〈1x2〉〈1p2〉 = 1
4

in which x = (a† + a)/√2, p = i(a† − a)/√2 are the corresponding coordinate and
momentum of the oscillator. Heisenberg’s uncertainty principle dictates that

〈1x2〉〈1p2〉 > 1
4

for arbitrary states.
(iii) It is obtained by applying a unitary operator (known as the displacement operator)

exp
(
α(a† − a))

to the vacuum state. Such unitary operators form a (unitary) representation of the
Heisenberg–Weyl group.

The last characterization is generalized by many authors and the concept of the coherent
states associated with various Lie algebras (groups) is now well established. Thus, starting
from a rather naive idea of introducing ‘probability amplitude’ for the Poisson distribution,
we have arrived at the concept of the coherent states, a rather solid subject in quantum theory
and the representation theory of Lie algebras (groups). As we have shown in previous
publications [15, 16], the relationship between coherent states and certain probability
amplitudes is neither coincidental nor superficial, but essential. As we will briefly point
out in section 3, the ‘probability amplitudes’ for the well known binomial and multinomial
distributions are the coherent states ofsu(2) andsu(r+1) algebras in the totally symmetric
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(bosonic) representations. The same assertion holds for the negative binomial and negative
multinomial distributions and the corresponding algebras aresu(1, 1) andsu(r, 1), the non-
compact counterparts ofsu(2) andsu(r + 1).

3. Coherent states of theAr algebra

3.1. Binomial states

Let us continue in the line of argument of introducing ‘probability amplitudes’ for classical
probability distributions. Here we consider the binomial distribution:

B(n0,n1)(η;M) =
(
M

n1

)
η2n1(1− η2)n0 n0+ n1 = M η ∈ R (3.1)

which describes the probability distribution ofM Bernoulli trials of success (probabilityη2)
and failure (probability 1− η2). Heren1 is the number of successes andn0 the number
of failures. As a Hilbert space let us choose the Fock space generated by two independent
bosonic oscillators:

[aj , a
†
k] = δjk [aj , ak] = [a†j , a

†
k] = 0 j, k = 0, 1

|n0, n1〉 = (a
†
0)
n0(a

†
1)
n1

√
n0!n1!

|0〉 aj |0〉 = 0 j = 0, 1
(3.2)

and restrict the total number toM (integer):

n0+ n1 = M. (3.3)

Let us denote by|η;M〉 the ‘square root’ of the binomial distribution within this finite
(M + 1) dimensional Hilbert space. Following the same steps as in the previous section,
we arrive at a simple expression:

|η;M〉 =
∑

n0+n1=M
|n0, n1〉〈n0, n1|η;M〉

=
∑

n0+n1=M

√
M!√
n0!n1!

ηn1(1− η2)n0/2|n0, n1〉

= 1√
M!

∑
n0+n1=M

M!

n0!n1!
(ηa

†
1)
n1(
√

1− η2a
†
0)
n0|0〉

= 1√
M!

(√
1− η2a

†
0 + ηa†1

)M
|0〉 (3.4)

which clearly shows that the ‘transition amplitude’ for each possible result〈n0, n1|η;M〉 is
actually obtained by the binomial expansion.

The next step is to identify|η;M〉 as a coherent state. Let us recall the realization of
su(2) algebra in terms of two bosonic oscillators:

J+ = a†0a1 J− = a†1a0 J0 = 1
2(a
†
0a0− a†1a1)

[J+, J−] = 2J0 [J0, J±] = ±J±.
(3.5)

Obviously the restricted two boson Fock space provides the irreducible (spinM/2)
representation ofsu(2) corresponding to the Young diagram

· · · M boxes.
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Its normalized highest-weight state is

|M, 0〉 = 1√
M!

(a
†
0)
M |0〉 J+|M, 0〉 = 0, J0|M, 0〉 = M

2
|M, 0〉. (3.6)

Similarly to the coherent states of the Heisenberg–Weyl group in section 2,su(2) coherent
states have the form

U |ψ0〉 U ∈ SU(2). (3.7)

These coherent states have ‘minimal uncertainty’ if the ‘base’ state|ψ0〉 corresponds to a
dominant weight, i.e. to the highest-weight state or its trajectory by the Weyl group [18].
Thus without loss of generality we choose|ψ0〉 = |M, 0〉. SinceJ+ annihilates the highest-
weight state andJ0 does not change it, the non-trivial action is byJ− only. So the un-
normalizedsu(2) coherent state is given by

exp(ξJ−) |M, 0〉 = 1√
M!

exp
(
ξa
†
1a0

)
(a
†
0)
M |0〉 = 1√

M!
(a
†
0 + ξa†1)M |0〉 ξ ∈ C. (3.8)

Here use is made of the fact that the oscillator algebra [a0, a
†
0] = 1 is realized bya0 = ∂/∂a†0

anda†0. In the last equality, the formal Taylor theorem

exp

(
α

d

dx

)
f (x) = f (x + α) (3.9)

is used. It is easy to get the normalized coherent state

1

M!

(√
1− |η|2a†0 + ηa†1

)M
|0〉 η = ξ/

√
1+ |ξ |2 ∈ C (3.10)

which has the same form as the binomial state derived above. (In order to get complexη

we only have to choose the phase of
√
B(n0,n1)(η;M) appropriately.) Thus we have shown

that the ‘probability amplitude’ of the binomial distribution is thesu(2) coherent state.

3.2. Multinomial states

In this subsection we discuss the relationship between the multinomial distributions and
the Ar coherent states [19], which has been demonstrated in some detail in our previous
paper [16]. Here we give a simpler and clearer proof of the correspondence with more
emphasis on the Lie algebraic structures (i.e. roots and weights) which would be useful for
comparison with the results of the other algebras discussed in later sections.

The multinomial distribution is

Mn(η ;M) = M!

n0! · · · nr ! η
2n0
0 η

2n1
1 · · · η2nr

r n0+ n1+ · · · + nr = M (3.11)

in which

n = (n0, n1, . . . , nr)

η2
0 = 1− η2 0< η2 = η2

1 + · · · + η2
r < 1 ηj ∈ R j = 0, . . . , r.

(3.12)

As a Hilbert space let us choose the Fock space generated byr + 1 independent bosonic
oscillators:

[aj , a
†
k] = δjk aj |0〉 = 0 j = 0, 1, . . . , r

|n〉 = (a†)n√
n!
|0〉 (a†)n = (a†0)n0(a

†
1)
n1 · · · (a†r )nr n! = n0!n1! · · · nr !

(3.13)
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and restrict the total number toM:

n0+ n1+ · · · + nr = M. (3.14)

It has the dimension(
M + r
M

)
=
(
M + r
r

)
. (3.15)

Let us denote by|η;M〉 the ‘square root’ of the multinomial distribution within this Hilbert
space. Then in a similar way to the binomial state we obtain

|η;M〉 =
∑

n0+···+nr=M
|n0, · · · , nr〉〈n0, · · · , nr |η;M〉

=
∑ √

M!√
n0! · · · nr !

η
n0
0 · · · ηnrr |n0, n1, · · · , nr〉

= 1√
M!

∑ M!

n0!n1! · · · nr ! (η0a
†
0)
n0 · · · (ηra†r )nr |0〉

= 1√
M!

(
η0a

†
0 + η1a

†
1 + · · · + ηra†r

)M
|0〉. (3.16)

Now let us considerAr algebra and its representations. Its Dynkin diagram is a simple
line connectingr vertices. The number attached to each vertex corresponds to the name of
the simple roots given below:

1

�

2

� � � �

r�1

�

r

�

The simple roots are most conveniently expressed in terms ofr + 1 orthonormal vectors in
Rr+1, ej · ek = δjk, j, k = 0, 1, . . . , r:

α1 = e0− e1, α2 = e1− e2, . . . , αr = er−1− er . (3.17)

Then any root, positive or negative, can be expressed as

ej − ek j 6= k (3.18)

which is positive ifj < k and negative forj > k. All the roots have the same length. The
fundamental weight vectors,{λj ; j = 1, . . . , r}, the dual basis of the simple root system

2λj · αk
α2
k

= δjk (3.19)

can also be expressed by{ej }. For example

λ1 = 1

r + 1
(r α1+ (r − 1)α2+ · · · + αr) = e0− e0+ · · · + er

r + 1
. (3.20)

We consider the irreducible representation ofAr with the highest weight:

µ = Mλ1 = M e0−M (e0+ e1+ · · · + er)
(r + 1)

(3.21)

corresponding to the Young diagram

· · · M boxes

which has the same dimension
(
M+r
r

)
as the restricted multiboson Fock space introduced

above. Thus this completely symmetric representation can be realized in terms ofr + 1
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bosonic oscillators. The weights and the occupation numbers are related one-to-one, namely
the state|n0, n1, . . . , nr〉 has the weight

µ =
r∑

j=0

njej −M (e0+ e1+ · · · + er)
(r + 1)

. (3.22)

All the weight spaces are non-degenerate, i.e. one-dimensional.
If we denote theAr generators corresponding to the rootej − ek by X(j,−k), we have

X(j,−k) = a†j ak (3.23)

and

[X(j,−k), X(k,−l)] = [a†j ak, a
†
kal ] = a†j al = X(j,−l)

[X(j,−k), X(k,−j)] = H(j,k) ≡ a†j aj − a†kak.
(3.24)

HereH(j,k) belongs to the Cartan subalgebra. The quadratic Casimir operator is

C2 = r

r + 1
Ntot(Ntot+ r + 1) Ntot =

r∑
j=0

a
†
j aj (3.25)

which takes the valuerM(M+r+1)/(r+1) in the present representation. The state having
the highest weight (3.21) is

|M, 0, . . . ,0〉 = (a
†
0)
M

√
M!
|0〉 (3.26)

which is annihilated by the generators

X(j,k) H(j,k) j, k = 1, . . . , r (3.27)

forming anAr−1 subalgebra. The action of the Cartan subalgebra generatorsH(0,j) does
not change the state, either:

H(0,j)|M, 0, . . . ,0〉 = M|M, 0, . . . ,0〉.
Thus the coherent states based on the highest-weight state (3.21) are characterized by

SU(r + 1)/U(1)× SU(r) = CPr . (3.28)

Among the generators belonging toCPr , only those

X(j,−0) = a†j a0 j = 1, . . . , r (3.29)

have non-trivial actions on the highest-weight state (3.21). Thus we find, as in the case of
the binomial state (3.8), that the un-normalizedAr coherent state is expressed as

exp

( r∑
j=1

ξjX(j,−0)

)
|M, 0, . . . ,0〉 = 1√

M!
exp

(( r∑
j=1

ξja
†
j

)
a0

)
(a
†
0)
M |0〉

= 1√
M!

(
a
†
0 +

r∑
j=1

ξja
†
j

)M
|0〉 ξ = (ξ1, . . . , ξr ) ∈ CPr (3.30)

in which use has been made of the Taylor expansion theorem (3.9) witha0 = ∂/∂a†0.
The normalizedAr coherent state in the totally symmetric representation is given by

|η;M〉 = 1√
M!

(
η0a

†
0 +

r∑
j=1

ηja
†
j

)M
|0〉 ηj = ξj /

√
1+ |ξ|2 ∈ C η0 =

√
1− |η|2

(3.31)



Probability distributions ofBr , Cr andDr algebras 909

which has the same form as the multinomial state|η;M〉 derived above. As in the binomial
state case the ‘transition amplitude’〈n0, . . . , nr |η;M〉 to each number state (or weight state
〈µ1, . . . , µr |η;M〉) is simply obtained by multinomial expansion.

3.3. Coordinate representation and addition theorems of Hermite polynomials: I

In this subsection we consider the ‘coordinate representation’ of the multinomial state
(3.31). This representation is useful in quantum optics. It also gives a simple proof
and interpretation of the following addition theorem of Hermite polynomials (see, for
example, [20] and [21, page 196]):

(η2
0 + · · · + η2

r )
M/2

M!
HM

(
(η0x0+ · · · + ηrxr)/

√
η2

0 + · · · + η2
r

)
=

∑
n0+···+nr=M

η
n0
0

n0!
· · · η

nr
r

nr !
Hn0(x0) · · ·Hnr (xr). (3.32)

Here η0,. . . ,ηr are arbitrary complex numbers. It should be noted that the left-hand side
contains

√
η2

0 + · · · + η2
r in even powers only, since Hermite polynomials have a definite

parity:

HM(−x) = (−1)MHM(x).

Let us begin with a single boson oscillator

[a, a†] = 1.

The coordinate representation of the number state|n〉 is

〈x|n〉 = 1√
n!
〈x|(a†)n|0〉 = 1

π1/42n/2
√
n!
Hn(x) e−

1
2x

2
(3.33)

in which Hermite polynomialHn is given by the Rodrigues formula:

Hn(x) = (−1)nex
2
Dne−x

2
D = d

dx
. (3.34)

It is well known that the generating function of the Hermite polynomials
∞∑
n=0

tn

n!
Hn(x) = e−t

2+2tx (3.35)

is essentially the same as the coordinate representation of the coherent state of the
Heisenberg–Weyl group (2.10):

〈x|ψ(α)〉 = exp
(− 1

2(x −
√

2α)2
)

π1/4
α ∈ R. (3.36)

The coordinate representation of the multinomial state (3.31) is simply obtained by expansion
(η1, . . . , ηr are in general complex):

〈x0, x1, . . . , xr |η;M〉 = 1√
M!
〈x0, x1, . . . , xr |

(
η0a

†
0 + · · · + ηra†r

)M
|0〉

=
√
M!

exp
(− 1

2(x
2
0 + · · · + x2

r )
)

π(r+1)/42M/2

×
∑

n0+···+nr=M

η
n0
0

n0!
· · · η

nr
r

nr !
Hn0(x0) · · ·Hnr (xr). (3.37)
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Next we consider operatorsA andÃ defined by

A = η0a0+ · · · + ηrar√
η2

0 + · · · + η2
r

Ã = η0a
†
0 + · · · + ηra†r√
η2

0 + · · · + η2
r

. (3.38)

They are not Hermitian conjugates of each other, but they satisfy the same relations as those
of the single oscillator:

[A, Ã] = 1 A|0〉 = 0

which are essential for deriving Hermite polynomials. Thus we obtain

〈x0, x1, . . . , xr |η;M〉 = (η2
0 + · · · + η2

r )
M/2

√
M!

〈x0, x1, . . . , xr |ÃM |0〉

= (η2
0 + · · · + η2

r )
M/2

√
M!

exp
(− 1

2(x
2
0 + · · · + x2

r )
)

π(r+1)/42M/2

×HM
(
(η0x0+ · · · + ηrxr)/

√
η2

0 + · · · + η2
r

)
. (3.39)

Comparing equations (3.37) and (3.39) we obtain the above-mentioned addition theorem
(3.32) for the Hermite polynomials, which is quite simply the multinomial expansion of
the multinomial state. In the appendix we give a proof and interpretation of another type
of addition theorem for Hermite polynomials based on negative multinomial states, i.e. the
coherent states of thesu(r, 1) algebra in discrete symmetric representations.

4. Cr multinomial states

Let us proceed to the second step in the study of ‘quantum probability’. In the previous
sections we have shown that some of the typical discrete probability distributions are
characterized by Lie algebras through coherent states. Now we reverse the logic and try
to derive new probability distributions starting from Lie algebras and their representations.
For this we have, in principle, an infinite choice of Lie algebras and their representations.
Most such new probability distributions are probably too exotic to be of any practical
use at present. However, the wide applicability of the Poisson, binomial and multinomial
distributions, and their ‘negative’ (non-compact) counterparts, leads us to expect that the
probability distributions related with the totally symmetric representations of the other
classical algebras,Br , Cr andDr could be useful, though possibly to a lesser degree. Apart
from the Poisson distribution which has only one parameter, the (negative) multinomial
distribution has many parameters,η and M, to give a suitable description of various
statistical phenomena. The same property is shared by all the probability distributions
derived from the totally symmetric representations ofBr , Cr andDr algebras. We propose
to call these coherent states theBr , Cr andDr multinomial states, and the corresponding
probability distributions theBr , Cr andDr multinomial distributions. We start with theCr
case and proceed in order of increasing complexity to theDr andBr cases.

4.1. Coherent states

The Dynkin diagram ofCr is obtained from that ofA2r−1 by folding:

1

�
2

� � � �
r

� � � �
r�1

�h
r

� (
1

�
2

� � � �
r

� � � �
2r�2

�
2r�1

�
�1Pi �1Pi
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Its simple roots can be expressed most conveniently in terms of an orthonormal basis of
Rr , ej · ek = δjk, j, k = 0, . . . , r:

α1 = e1− e2, α2 = e2− e3, . . . , αr−1 = er−1− er , αr = 2er . (4.1)

The positive roots are

ej − ek (j < k) ej + ek 2ej . (4.2)

There are 2r(r − 1) short roots and 2r long roots (±2ej ), and the dimensions ofCr algebra
is 2r2+ r. The fundamental weights are

λ1 = e1, λ2 = e1+ e2, . . . . (4.3)

We consider the irreducible representation with the highest weight:

µ = Mλ1 = Me1. (4.4)

Its dimensionality is(
M + 2r − 1

2r − 1

)
=
(
M + 2r − 1

M

)
.

It is the same as the dimension of the restricted multiboson (M particle) Fock space of
A2r−1 with 2r bosonic oscillators:

[aj , a
†
k] = [bj , b

†
k] = δjk j, k = 1, . . . , r (4.5)

with the number states

|n1, . . . , nr; n1, . . . , nr〉 n1+ · · · + nr + n1+ · · · + nr = M (4.6)

in which nj (nj ) is the number ofaj (bj ) quanta.
Similarly to the Ar case, we introduce the following notation for the generators

corresponding to the roots:

X(j,−k) ⇔ ej − ek
X(j,k) ⇔ ej + ek X(−j,−k) ⇔ −ej − ek
X(j,j) ⇔ 2ej X(−j,−j) ⇔ −2ej .

(4.7)

Their forms are

X(j,−k) = a†j ak − b†kbj
X(j,k) = a†j bk + a†kbj X(−j,−k) = b†j ak + b†kaj
X(j,j) = a†j bj X(−j,−j) = b†j aj .

(4.8)

It is elementary to check the commutation relations; for example:

[X(j,−k), X(k,−l)] = [a†j ak − b†kbj , a†kal − b†l bk] = a†j al − b†l bj = X(j,−l)
[X(j,−k), X(k,−j)] = a†j aj − b†j bj − a†kak + b†kbk ≡ Hj −Hk

(4.9)

and so on. The quadratic Casimir operator is

C2 = Ntot(Ntot+ 2r) Ntot =
r∑

j=1

(a
†
j aj + b†j bj ) (4.10)
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which givesM(M + 2r) in the present representation. It is easy to see that each number
state belongs to some weight

|n1, . . . , nr; n1, . . . , nr〉 ⇒ µ =
r∑

j=1

(nj − nj )ej . (4.11)

In contrast to theA2r−1 case, this correspondence is not one-to-one. Some weight spaces
are degenerate. For example, forM = 4 andr = 2

|1, 1; 1, 1〉 |2, 0; 2, 0〉 |0, 2; 0, 2〉
belong to the null weightµ = 0.

As in the case of the binomial states (3.7) we adopt as the ‘base’ state|ψ0〉 the highest-
weight state

|M, 0, . . . ,0; 0, . . . ,0〉 = (a
†
1)
M

√
M!
|0〉 (4.12)

which guarantees ‘minimum uncertainty’. Together with all the positive root generators, it
is also annihilated by the following generators:

X(j,−k), X(j,k), X(−j,−k), X(j,j), X(−j,−j), Hj 26 j, k 6 r (4.13)

which form aCr−1 subalgebra. Likewise the action of the Cartan subalgebra generator
H1 does not change the highest-weight state. Therefore theCr multinomial states are
parametrized by

Sp(2r)/U(1)× Sp(2(r − 1)) = CP2r−1

which also indicates the connection with theA2r−1 case. In fact the generators having
non-trivial action on the highest-weight state are

X(−1,j) 26 j 6 r and X(−1,−j) 16 j 6 r. (4.14)

The generators in the first (second) group commute with each other. In particular,X(−1,−1)

which belongs to the lowest root, commutes with all the generators in the list (4.14). The
non-commuting pairs among the above generators are

[X(−1,j), X(−1,−j)] = −2X(−1,−1) 26 j 6 r (4.15)

and the resulting generator commutes with all the other generators in the list (4.14), as
shown above.

In terms of the 2r − 1 complex parameters

ξj 26 j 6 r ξ−j 16 j 6 r ξ = (ξ2, . . . , ξr; ξ−1, . . . , ξ−r ) ∈ CP2r−1 (4.16)

the un-normalized coherent state is expressed as

eC+D(a†1)
M |0〉 C =

r∑
j=2

ξjX(−1,j) D =
r∑

j=1

ξ−jX(−1,−j) (4.17)

with [C,D] = 2(
∑r
j=2 ξj ξ−j )X(−1,−1) commuting withC andD. With the help of the BCH

formula

eC+D = eC−
1
2 [C,D]eD

and the formal Taylor expansion theorem (3.9), we arrive at the following expression of the
un-normalizedCr multinomial state(

a
†
1 +

r∑
j=2

ξja
†
j +

r∑
j=1

ξ−j b
†
j

)M
|0〉 (4.18)
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in which the effects of non-commutativity cancel out exactly. Therefore the normalizedCr
multinomial state is

|η;M;Cr〉 = 1√
M!

( r∑
j=1

ηja
†
j +

r∑
j=1

η−j b
†
j

)M
|0〉 (4.19)

in which

η1 =
(

1+
r∑

j=2

|ξj |2+
r∑

j=1

|ξ−j |2
)− 1

2

ηj = ξjη1 η−j = ξ−j η1 26 j 6 r

(4.20)

satisfying the condition

r∑
j=1

(|ηj |2+ |η−j |2) = 1.

This has exactly the same form as theA2r−1 multinomial state.

4.2. Probability distribution

Now we derive the probability distribution from the coherent state, which has exactly the
same form as theAr multinomial state. So it predicts the multinomial distribution for the
numbersn1,. . . ,nr with the corresponding probabilities|η1|2,. . . ,|η−r |2:

|〈n1, . . . , nr; n1, . . . , nr |η;M;Cr〉|2

= M!

n1! · · · nr !n1! · · · nr ! |η1|2n1 · · · |ηr |2nr |η−1|2n1 · · · |η−r |2nr . (4.21)

As remarked above, theCr states are labelled by the weight

µ = (µ1, . . . , µr)

which takes positive, zero and negative integer values. Each weight space has one or many
number states which are orthogonal to each other. Therefore theCr multinomial distribution
is obtained by summing the contributions from these number states:

Cµ(η;M) =
∑

nj−nj=µj

M!

n1! · · · nr !n1! · · · nr ! |η1|2n1 · · · |ηr |2nr |η−1|2n1 · · · |η−r |2nr . (4.22)

Let us interpret it in terms of ‘picking balls out of a pot’. The pot contains an infinite
number of balls ofr-different colours. There are two types of balls for each colour, the
‘positive’ one and ‘negative’ one. Let the probabilities of picking onej th colour ball be
η2
j for the ‘positive’ and η2

−j for the ‘negative’. We pick up total ofM balls and ask
the probability distribution for the ‘net’ number of balls (or the ‘weight’) for each colour:
µj = nj − nj , j = 1, . . . , r. It is given by theCr multinomial distribution. We see that
the folding of theA2r−1 Dynkin diagram leading to that ofCr is very suggestive of this
situation.
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5. Dr multinomial states

Here we will derive probability distributions associated with the symmetric representations
of Dr algebra. They have some new features not present in the multinomial distributions
associated withA2r−1 or Cr algebras. The Dynkin diagram ofDr algebra with the names
of simple roots attached to the vertices is shown below.

1

�

2

� � � �

r�3

�

� r�

� r�2�

� r�1

The corresponding simple roots are

α1 = e1− e2, α2 = e2− e3,

. . . , αr−2 = er−2− er−1, αr−1 = er−1− er , αr = er−1+ er . (5.1)

The positive roots are all of the same length:

ej − ek (j < k) ej + ek. (5.2)

The dimension of theDr algebra is 2r2− r. The fundamental weights are

λ1 = e1, λ2 = e1+ e2, . . . (5.3)

and we consider, as before, the irreducible representation with highest weight:

µ = Mλ1 = Me1. (5.4)

Let us denote this representation byρMD and the corresponding vector space byVMD . We
know from Weyl’s dimension formula that

dim(V M
D ) =

(
M + 2r − 3

2r − 3

)
× M + r − 1

r − 1
. (5.5)

Let us realize this representation in terms of 2r bosons

a1, . . . , ar , b1, . . . , br

and in its restricted Fock space denoted byFM2r :

FM2r ; |n1, . . . , nr; n1, . . . , nr〉, n1+ · · · + nr + n1+ · · · + nr = M. (5.6)

We have

dim(FM2r ) =
(
M + 2r − 1

2r − 1

)
=
(
M + 2r − 1

M

)
. (5.7)

Comparing equations (5.5) and (5.7), we find that

dim(FM2r ) = dim(V MD )+ dim(FM−2
2r )

= dim(V MD )+ dim(V M−2
D )+ · · · (5.8)

which means that the bosonic Fock spaceFM2r contains several irreducible representations
ρLD with differentL’s.

Let us introduce, as in theCr case, the following notation for the generators
corresponding to the roots:

X(j,−k) ⇔ ej − ek
X(j,k) ⇔ ej + ek X(−j,−k) ⇔ −ej − ek.

(5.9)
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Their forms are

X(j,−k) = a†j ak − b†kbj
X(j,k) = a†j bk − a†kbj X(−j,−k) = b†kaj − b†j ak.

(5.10)

It is elementary to check the commutation relations; for example, they are (4.9),

[X(j,−k), X(k,l)] = [a†j ak − b†kbj , a†kbl − a†l bk] = a†j bl − a†l bj = X(j,l)
[X(j,k), X(−j,−k)] = a†j aj − b†j bj + a†kak − b†kbk ≡ Hj +Hk

(5.11)

and so on. The quadratic Casimir operator is

C2 = Ntot (Ntot+ 2(r − 1))− 4K†K Ntot =
r∑

j=1

(a
†
j aj + b†j bj ) (5.12)

in whichK andK† are quadratic operators in the oscillators

K =
r∑

j=1

ajbj K† =
M∑
j=1

a
†
j b
†
j . (5.13)

They commute with all the above generators, including those belonging to the Cartan
subalgebra:

[K,X±(j,±k)] = [K,Hj ] = [K†, X±(j,±k)] = [K†, Hj ] = 0. (5.14)

In terms ofK† we can express the decomposition of the bosonic Fock space succinctly:

FM2r = VMD ⊕ VM−2
D ⊕ · · ·V 1

D(V
0
D) (5.15)

in which the vector spaceVMD is obtained from the highest-weight state

|M, 0, . . . ,0; 0, . . . ,0〉 = (a
†
1)
M

√
M!
|0〉 (5.16)

by applying the negative weight generators successively. Thej th vector space on the
right-hand sideVM−2(j−1)

D is obtained from the highest-weight state

(a
†
1)
M−2(j−1)

√
(M − 2(j − 1))!

(K†)j−1|0〉 (5.17)

by applying the negative weight generators successively. It is easy to see thatK annihilates
all the states inVM

D

Kv = 0 ∀ v ∈ VMD
and we getC2 = M(M + 2(r − 1)) in the highest-weight representation (5.4), (5.16). It is
easy to see that each number state belongs to some weight

|n1, . . . , nr; n1, . . . , nr〉 ⇒ µ =
r∑

j=1

(nj − nj )ej . (5.18)

The highest-weight state (5.17) is annihilated by the following generators belonging to
aDr−1 subalgebra:

X(j,−k), X(j,k), X(−j,−k), Hj 26 j, k 6 r (5.19)

as well as by all the positive root generators. The Cartan subalgebra generatorH1 does not
change the highest-weight state. In other words, the generators having non-trivial actions
on the highest-weight state are

X(−1,j) X(−1,−j) 26 j 6 r. (5.20)
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If we denote the compact group corresponding toDr by SO(2r), theDr multinomial states
are parametrized by

SO(2r)/U(1)× SO(2(r − 1))

having the dimension

4(r − 1).

In terms of the 2(r − 1) complex parameters

ξj ξ−j 26 j 6 r (5.21)

we define a linear combination of the non-trivial generators (5.20) as

T =
r∑

j=2

ξjX(−1,j) +
r∑

j=2

ξ−jX(−1,−j). (5.22)

It should be noted that all the generators in (5.22) or (5.20) commute with each other, since
the sum of the corresponding roots are not roots any more. Thus we arrive at the expression
of the un-normalized coherent state:

exp [T ](a†1)
M |0〉 =

r∏
j=2

exp(ξjX(−1,j))

r∏
j=2

exp(ξ−jX(−1,−j))(a
†
1)
M |0〉. (5.23)

By repeated use of the formal Taylor expansion theorem (3.9) we obtain the following
explicit form: (

a
†
1 +

r∑
j=2

ξja
†
j +

r∑
j=2

ξ−j b
†
j −

( r∑
j=2

ξj ξ−j

)
b
†
1

)M
|0〉. (5.24)

This looks similar to theA2r−1 andCr multinomial states, except that the coefficient ofb
†
1

is not independent. The normalizedDr multinomial state is

|η;M;Dr〉 = 1√
M!

( r∑
j=1

ηja
†
j +

r∑
j=1

η−j b
†
j

)M
|0〉 (5.25)

in which

η1 =
(

1+
r∑

j=2

|ξj |2+
r∑

j=2

|ξ−j |2+ |
r∑

j=2

ξj ξ−j |2
)− 1

2

ηj = ξjη1 η−j = ξ−j η1 26 j 6 r

η−1 = −
( r∑
j=2

ξj ξ−j

)
η1

(5.26)

satisfying the condition

r∑
j=1

(|ηj |2+ |η−j |2) = 1.

Let us turn to the form of the probability distribution derived from theDr multinomial
state, which has a form similar to that derived from theAr multinomial state.
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Similarly to theCr case, theDr multinomial state predicts the multinomial distribution
to thenumber stateswith the probabilities|ηj |2 and |η−j |2 :

|〈n1, . . . , nr; n1, . . . , nr |η;M;Dr〉|2

= M!

n1! · · · nr !n1! · · · nr ! |η1|2n1 · · · |ηr |2nr |η−1|2n1 · · · |η−r |2nr . (5.27)

By summing the contributions from all the number states belonging to a given weightµ
we obtain theDr multinomial distribution:

Dµ(η;M) =
∑

nj−nj=µj

M!

n1! · · · nr !n1! · · · nr ! |η1|2n1 · · · |ηr |2nr |η−1|2n1 · · · |η−r |2nr . (5.28)

Thus the interpretation as ‘picking coloured balls out of a pot’ is also valid. The marked
difference is that of the probabilities|η1|2, . . . , |ηr |2, |η−1|2, . . . , |η−r |2, only 2(r − 1) of
them are independent. As is clear from equations (5.26), one of thedependentprobabilities,
say |η−1|2, depends on the information of the otherη±j ’s including their phases (or more
precisely theξj ’s), not the|η±j |2’s. We believe that this is a novel feature not encountered
in any classical probability distributions. We may say that theDr multinomial distribution
has non-classical (or quantum) features.

6. Br multinomial states

The Dynkin diagram ofBr is obtained from that ofDr+1 by folding the two tails:

1

�
2

� � � �
r�2

�
r�1

�
r

i� (
1

�
2

� � � �
r�2

�

� r+1�

� r�1�

� r

AK

��

Thus we expect that theBr multinomial states (distributions) have similarities with those
of Dr with some added new features due to the folding. The simple roots ofBr are

α1 = e1− e2, α2 = e2− e3, . . . , αr−1 = er−1− er , αr = er . (6.1)

The positive roots are

ej − ek (j < k) ej + ek ej . (6.2)

There are 2r(r − 1) long roots and 2r short roots (±ej ) and the dimension ofBr algebra is
2r2+ r, the same asCr . The fundamental weights are

λ1 = e1, λ2 = e1+ e2, . . . . (6.3)

As before we consider the irreducible representation with the highest weight:

µ = Mλ1 = Me1. (6.4)

Let us denote this representationρMB and the corresponding vector space byVMB . Weyl’s
dimension formula gives

dim(V MB ) =
(
M + 2r − 2

2r − 2

)
× 2M + 2r − 1

2r − 1
. (6.5)

This representation is realized in a restricted Fock space denoted byFM2r+1:

FM2r+1; |n0, n1, . . . , nr; n1, . . . , nr〉, n0+ n1+ · · · + nr + n1+ · · · + nr = M
(6.6)
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which is generated by 2r + 1 bosonic oscillators

a0, a1, . . . , ar b1, . . . , br .

As in theDr case, by comparing the dimensions of the bosonic Fock space

dim(FM2r+1) =
(
M + 2r

2r

)
=
(
M + 2r

M

)
(6.7)

with the dimensions ofVMB (6.5), we find that

dim(FM2r+1) = dim(V MB )+ dim(FM−2
2r+1 )

= dim(V MB )+ dim(V M−2
B )+ · · · (6.8)

which means that the bosonic Fock spaceFM2r+1 contains several irreducible representations
ρLB with different highest weights (L = M,M − 2, . . .).

Similarly to theAr case, the generators corresponding to various roots have the following
forms:

X(j,−k) = a†j ak − b†kbj
X(j,k) = a†j bk − a†kbj X(−j,−k) = b†j ak − b†kaj
X(j,0) = a†j a0− a†0bj X(−j,−j) = a†0aj − b†j a0

(6.9)

in which, as in theCr case, we use the notation

X(j,−k) ⇔ ej − ek
X(j,k) ⇔ ej + ek X(−j,−k) ⇔ −ej − ek
X(j,0) ⇔ ej X(−j,0) ⇔ −ej .

(6.10)

The commutation relations are easily verified as in the previous cases. The quadratic Casimir
operator is

C2 = Ntot(Ntot+ 2r − 1)− 4K†K Ntot = a†0a0+
r∑

j=1

(a
†
j aj + b†j bj ) (6.11)

in whichK andK† are quadratic operators in the oscillators

K = 1

2
a2

0 +
r∑

j=1

ajbj K† = 1

2
(a
†
0)

2+
M∑
j=1

a
†
j b
†
j . (6.12)

As in theDr cases,K andK† commute with all the above generators including those
belonging to the Cartan subalgebra. The decomposition of the restricted bosonic Fock
space into the irreducible representation spaces goes in parallel with theDr case:

FM2r+1 = VMB ⊕ VM−2
B ⊕ · · ·V 1

B(V
0
B) (6.13)

in which the vector spaceVMB is obtained from the highest-weight state

1√
M!

(a
†
1)
M |0〉 = |0,M,0, . . . ; 0, . . . ,0〉 (6.14)

by applying the negative root generators successively. Thej th vector space on the right-
hand sideVM−2(j−1)

B is obtained from the highest-weight state

(a
†
1)
M−2(j−1)

√
(M − 2(j − 1))!

(K†)j−1|0〉 (6.15)
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in a similar way. As in theDr cases,K andK† annihilate all the states inVMB . Thus
the quadratic Casimir operator takes the valueC2 = M(M + 2r − 1) in the highest-weight
representation (6.4), (6.14).

One great difference between theDr andBr cases is the correspondence between the
number states and weights. In theBr case

|n0, n1, . . . , nr; n1, . . . , nr〉 ⇒ µ =
r∑

j=1

(nj − nj )ej . (6.16)

Namely,n0, the number ofa0 quanta, has no effects on the weights.
The Br coherent states can be constructed in a way similar to theDr cases. The

generators having non-trivial action on the highest-weight states are

X(−1,j) X(−1,−j) 26 j 6 r and X(−1,0) (6.17)

which commute with each other, since the sum of the corresponding roots are no longer
roots. They constitute one half of the generators corresponding to the quotient space

SO(2r + 1)/U(1)× SO(2r − 1)

having the dimension

2(2r − 1).

In terms of the 2r − 1 complex parameters

ξ0 ξj ξ−j 26 j 6 r (6.18)

we define a linear combination of the non-trivial generators (6.17) as

T = ξ0X(−1,0) +
r∑

j=2

ξjX(−1,j) +
r∑

j=2

ξ−jX(−1,−j). (6.19)

Then the un-normalized coherent state is expressed as

exp[T ](a†1)
M |0〉 (6.20)

which, after repeated use of the formal Taylor theorem (3.9), leads to(
ξ0a
†
0 + a†1 +

r∑
j=2

ξja
†
j +

r∑
j=2

ξ−j b
†
j −

(
ξ2

0

2
+

r∑
j=2

ξj ξ−j

)
b
†
1

)M
|0〉. (6.21)

Thus we obtain the normalizedBr multinomial state

|η;M;Br〉 = 1√
M!

(
η0a

†
0 +

r∑
j=1

ηja
†
j +

r∑
j=1

η−j b
†
j

)M
|0〉 (6.22)

in which

η1 =
(

1+
r∑

j=2

|ξj |2+
r∑

j=2

|ξ−j |2+
∣∣∣∣ξ2

0

2
+

r∑
j=2

ξj ξ−j

∣∣∣∣2)−
1
2

η0 = ξ0η1

ηj = ξjη1 η−j = ξ−j η1 26 j 6 r η−1 = −
(
ξ2

0

2
+

r∑
j=2

ξj ξ−j

)
η1

(6.23)

satisfying the condition

|η0|2+
r∑

j=1

(|ηj |2+ |η−j |2) = 1.
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Let us turn to the probability distribution. TheBr multinomial states give the
multinomial distribution for thenumber stateswith probabilities|η0|2, |ηj |2 and |η−j |2:

|〈n0, n1, . . . , nr; n1, . . . , nr |η;M;Br〉|2

= M!

n0!n1! · · · nr !n1! · · · nr ! |η0|2n0|η1|2n1 · · · |ηr |2nr |η−1|2n1 · · · |η−r |2nr . (6.24)

By summing the contributions from all the number states belonging to a given weightµ
we obtain theBr multinomial distribution:

Bµ(η;M) =
∑

nj−nj=µj

M!

n0!n1! · · · nr !n1! · · · nr ! |η0|2n0|η1|2n1 · · · |ηr |2nr |η−1|2n1 · · · |η−r |2nr .

(6.25)

Here let us recall thatn0 has no effects on the weights. Thus the interpretation ‘picking
coloured balls out of a pot’ is also valid, but with a slight modification. In the pot we have
2r + 1 types of balls, among themr different colours, and each colour has ‘positive’ and
‘negative’ types. There are also ‘colourless’ (or ‘dummy’) balls. They have probabilities
|ηj |2, |η−j |2 (j = 1, . . . , r) and |η0|2. We pick up total ofM balls and ask what is the
probability distribution of the ‘net’ number of coloured balls (or weights). It is given by
theBr multinomial distribution. As in theDr multinomial distribution, of the probabilities
|η0|2,|η1|2, . . . , |ηr |2, |η−1|2, . . . , |η−r |2, only 2r − 1 of them are independent. As is
clear from equations (6.23), one of thedependentprobabilities, say|η−1|2, depends on the
information of the otherη±j ’s including their phases. The existence of the ‘colourless’
balls (or dummy elements) and the ‘quantum’ nature ofη−1 are novel features of theBr
multinomial distributions.

7. Summary

Starting from the fact, established in our previous work [16], that the coherent states of the
Heisenberg–Weyl,su(2), su(r + 1), su(1, 1) and su(r, 1) algebras in certain symmetric
(bosonic) representations give the well known probability distributions of the Poisson,
binomial and multinomial distributions with their ‘negative’ counterparts, we have proceeded
to the second stage in the study of ‘quantum probability’. By reversing the logic, we
have obtained new probability distributions based on the coherent states of the classical
algebrasBr , Cr andDr in symmetric (bosonic) representations. These new probability
distributions have features similar to those of the multinomial distributions related to the
Ar algebra. They also possess several new features reflecting their Lie algebraic and
‘quantum’ backgrounds. As byproducts, simple proofs and interpretation of some addition
theorems of Hermite polynomials are obtained, based on the ‘coordinate’ representation
of the (negative) multinomial states, the coherent states ofsu(r + 1) (su(r, 1)) algebra in
symmetric representations.
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Appendix. Addition theorems: II

In this appendix we show a simple proof and interpretation of another type of addition
theorem for Hermite polynomials. These theorems are non-compact counterparts of the
theorems presented in subsection 3.3. They are obtained from the coordinate representation
of the negative binomial and negative multinomial states, i.e. the coherent states of the
su(1, 1) and su(r, 1) in symmetric representations. The theorem corresponding to the
negative binomial states reads

(1− η2)−M/2 exp

(
x2

0 −
(x0− ηx1)

2

1− η2

)
HM−1

(
x0− ηx1√

1− η2

)

=
∞∑
n=0

(η/2)n

n!
Hn+M−1(x0)Hn(x1) (A.1)

in which η is a complex parameter|η| < 1. This addition theorem is known as generalized
Mehler formula [24, 25], but is not found in the standard mathematics reference texts,
except for the simplest case withM = 1 which is well known as the Mehler formula
(see, for example, [21, page 194]). For a detailed characterization of the negative binomial
(multinomial) distributions in terms of Lie algebras, we refer the reader to our previous
work [16].

Let us begin with the negative binomial distribution (hereη ∈ R for simplicity):

B−n (η;M) =
(
M + n− 1

n

)
η2n(1− η2)M n = 0, 1, . . . (A.2)

which describes the probability distribution of the ‘waiting time’ [22]. Suppose we play
Bernoulli’s trial of success and failure in which the probability offailure is 0 < η2 < 1.
The probability distribution forn, such that the (preset)Mth (M > 1, integer) success turns
out at the(M + n)th trial, is given by the above formula (A.2). We follow the examples
of the previous sections and construct the ‘probability amplitude’ of the negative binomial
distribution. We choose the following restricted bosonic Fock space built by two bosonic
oscillators:

[aj , a
†
k] = δjk aj |0〉 = 0 j, k = 0, 1

|n0; n1〉 = a
†n0
0 a

†n1
1√

n0!n1!
|0〉 n0− n1 = M − 1 n > 0.

(A.3)

Heren0 is the total number of trials except for the final one andn1 is the number of failures
(the final trial is always a success, by definition). Obviously this Fock space is infinite
dimensional. We look for a state|η;M〉− such that

|〈n0; n1|η;M〉−|2 = B−n1
(η;M).

For a special choice of the phases (cf equation (2.5)) we arrive at a very simple result:

|η;M〉− =
∑
|n0; n1〉〈n0; n1|η;M〉−

= (1− η2)M/2
∑
|n0; n1〉ηn

√
n0!

n1!(M − 1)!

= (1− η2)M/2
∞∑
n1=0

(ηa
†
0a
†
1)
n1

n1!

(a
†
0)
M−1

√
(M − 1)!

|0〉
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= (1− η2)M/2 exp
(
ηa
†
0a
†
1

)
|M − 1; 0〉. (A.4)

This is called the negative binomial state [13, 15, 16]. This is exactly ansu(1, 1) coherent
state as we will see presently. Thesu(1, 1) algebra is realized in the above Fock space as

K+ = a†0a†1 K− = a0a1 K0 = 1
2(N0+N1+ 1) Nj = a†j aj

[K+,K−] = −2K0 [K0,K±] = ±K±.
(A.5)

The lowest-weight state is|M − 1; 0〉:
K−|M − 1; 0〉 = 0 K0|M − 1; 0〉 = 1

2M|M − 1; 0〉 (A.6)

which gives rise to the discrete irreducible representation with Bargman indexM/2. Thus
the un-normalized coherent state is (η ∈ C)

eηK+|M − 1; 0〉 = eηa
†
0a
†
1|M − 1; 0〉 (A.7)

which has the same form as that given in (A.4).
Next we take the coordinate representation of the above negative binomial state:

〈x0; x1| exp
(
ηa
†
0a
†
1

)|M − 1; 0〉
and evaluate it in two different ways. The first is to simply expand the exponential and use
equation (3.33):

〈x0; x1| exp
(
ηa
†
0a
†
1

)|M − 1; 0〉 = exp
(− 1

2(x
2
0 + x2

1)
)

π1/2
√
(M − 1)!

∞∑
n=0

(η/2)n

n!
Hn+M−1(x0)Hn(x1) (A.8)

which corresponds to the right-hand side of (A.1).
The second is to use the coordinate representation of the creation operators

a
†
j =

1√
2

(
xj − ∂

∂xj

)
= − 1√

2
exp

(
1
2x

2
j

)
Dj exp

(− 1
2x

2
j

)
Dj = ∂

∂xj
j = 0, 1

to obtain

〈x0; x1| exp
(
ηa
†
0a
†
1

)|M − 1; 0〉

= (−1)M−1

π1/2
√
(M − 1)!

exp
(

1
2(x

2
0 + x2

1)
)

exp
(
ηD0D1/2

)
DM−1

0 exp
(−(x2

0 + x2
1)
)
.

By applying the formal Taylor theorem (3.9) with respect tox1, treatingηD0 as a parameter,
we obtain

〈x0; x1| exp
(
ηa
†
0a
†
1

)|M − 1; 0〉

= (−1)M−1 exp
(

1
2(x

2
0 + x2

1)
)

π1/2
√
(M − 1)!

DM−1
0 exp

(−(x1+ ηD0/2)
2
)

exp
(−x2

0

)
= (−1)M−1 exp

(
1
2(x

2
0 + x2

1)
)

π1/2
√
(M − 1)!

1√
1− η2

e−ηx1D0DM−1
0 exp

(
− x2

0

1− η2

)
(A.9)

which gives a scaled (1/
√

1− η2) and shifted (−ηx1) Hermite polynomial (HM−1) by the
Rodrigues formula (3.34):

RHS of (A.9)= 1

π1/2
√
(M − 1)!

(1− η2)−M/2 exp
(

1
2x

2
0

)
exp

(
− (x0− ηx1)

2

1− η2

)

×HM−1

(
x0− ηx1√

1− η2

)
. (A.10)



Probability distributions ofBr , Cr andDr algebras 923

Here use is made of a simple formula

exp
(
tD2

0

)
exp

(−x2
0

) = 1√
1+ 4t

exp

(
− x2

0

1+ 4t

)
|t | < 1

2

which can be proved, for example, by taking the Fourier transform. By comparing
equations (A.9) and (A.10) we arrive at the addition theorem of Hermite polynomials given
above (A.1). It should be remarked that the generalized Mehler formula (A.1) is also
obtained from the Mehler formula (M = 1) by differentiationM − 1 times with respect to
x0.

Generalization to the negative multinomial distribution

M−n (η ;M) = (1− η2)M
(M + n1+ · · · + nr − 1)!

n!(M − 1)!
η

2n1
1 · · · η2nr

r (A.11)

n = (n0, n1, . . . , nr) η = (η1, . . . , ηr) ∈ Rr 0< η2 = η2
1 + · · · + η2

r < 1

(A.12)

is rather straightforward. We introduce a restricted Fock space generated byr+1 oscillators:

[aj , a
†
k] = δjk aj |0〉 = 0 j = 0, 1, . . . , r

|n0; n1, . . . , nr〉 = (a
†
0)
n0(a

†
1)
n1 · · · (a†r )nr√

n0!n1! · · · nr !
|0〉 n0− (n1+ · · · + nr) = M − 1.

(A.13)

Then the ‘square root’ of the negative multinomial distribution is

|η ;M〉− = (1− η2)M/2 exp

(
a
†
0

( r∑
j=1

ηja
†
j

))
|M − 1; 0, . . . ,0〉 (A.14)

which is an su(r, 1) coherent state in an irreducible symmetric representation with the
lowest-weight state

|M − 1; 0, . . . ,0〉. (A.15)

The generators are

K+j = a†0a†j K−k = a0ak 16 j, k 6 r

Kjk = a†j ak (j 6= k 6= 0) Nj = a†j aj . (A.16)

It is easy to see that they leave the combination

1 ≡ N0− (N1+ · · · +Nr)
and the above Fock space (A.13) invariant. Of the above generators the followingr

generators have non-trivial actions on the lowest-weight state (A.15):

K+j = a†0a†j j = 1, . . . , r. (A.17)

Thus in terms of ther complex parametersη1,. . . ,ηr , satisfying the condition

|η|2 =
r∑

j=1

|ηj |2 < 1 (A.18)

we obtain an un-normalized negative multinomial state

exp

( r∑
j=1

ηjK+j

)
|M − 1; 0, . . . ,0〉 = exp

(
a
†
0

( r∑
j=1

ηja
†
j

))
|M − 1; 0, . . . ,0〉 (A.19)
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which has the same form as (A.14). By evaluating the coordinate representation of the
above state (A.19) in two different ways, we obtain another form of addition theorem for
Hermite polynomials:

(1− η2)−M/2 exp

(
x2

0 −
(x0− η1x1− · · · − ηrxr)2

1− η2
1 · · · − η2

r

)
HM−1

(
x0− η1x1− · · · − ηrxr√

1− η2
1 · · · − η2

r

)

=
∞∑
nj=0

(η1/2)n1

n1!
· · · (ηr/2)

nr

nr !
HM+n1···+nr−1(x0)Hn1(x1) · · ·Hnr (xr). (A.20)

One can obtain this addition theorem by combining the addition theorems from the
multinomial state (3.32) and that of the negative binomial state (A.1), which reflects the
fact that the negative multinomial state is also obtained by combining the negative binomial
state and the multinomial state.

Before concluding this appendix, let us mention another interesting form of addition
theorem for Hermite polynomials, which is obtained as a special case of (A.1). By setting
x0 ≡ x andx1 ≡ 0, we obtain

(1− η2)−M/2 exp

(
− η2

1− η2
x2

)
HM−1

(
x√

1− η2

)
=
∞∑
n=0

(−η2/4)n

n!
H2n+M−1(x). (A.21)

Here use is made of the relations

H2n(0) = (−1)n(2n− 1)!! = (−1)n1 · 3 · · · (2n− 1) H2n+1(0) = 0.

This form of addition theorem can also be obtained from another type of ‘coherent states’
of the su(1, 1) algebra. Let us take the single boson Fock space (2.6)–(2.8) with the basis
{|n〉, n = 0, 1, . . . , } generated bya anda†. The su(1, 1) algebra is realized by

K+ = 1
2(a
†)2 K− = 1

2a
2 K0 = 1

2a
†a + 1

4. (A.22)

As before, we evaluate an un-normalized ‘coherent state’

exp
(
tK+

)|M − 1〉 = exp
(

1
2t (a

†)2
)|M − 1〉 |t | < 1 (A.23)

in two different ways (t = −η2). The above state is known as the ‘squeezed number state’
in quantum optics [23], since the ‘base state’|M − 1〉 is not of lowest weight.
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